УДК 553.98.061.4

ФІЛЬТРАЦІЙНО-ЄМНІСНА ХАРАКТЕРИСТИКА ТА ПЕТРОФІЗИЧНЕ МОДЕЛЮВАННЯ ВЗАЄМОЗВ'ЯЗКІВ ФІЗИЧНИХ ТА КОЛЕКТОРСЬКИХ ПАРАМЕТРІВ НИЗЬКООМНИХ ПОРІД-КОЛЕКТОРІВ

¹О.М. Трубенко, ¹С.Д. Федоришин, ²В.Я. Дмитерчук, ¹В.В. Федорів, ¹Я.М. Коваль, ¹А.П. Олійник

¹ ІФНТУНГ, 76019, м. Івано-Франківськ, вул. Карпатська 15, тел. (03422) 40155, e-mail: geotom@nung. edu.ua

² Івано-Франківська ЕГДС, 76000, Івано-Франківськ, вул. Декабристів, 54

Розглядаються результати досліджень структури порового простору складнопобудованих порідколекторів; обтрунтовано зв'язок структурних та літологічних параметрів із електропровідністю продуктивних порід неогенових відкладів Зовнішньої зони Передкарпатського прогину. За результатами експериментальних досліджень керну в умовах, що наближені до пластових, визначено фільтраційно-ємнісні характеристики та встановлено петрофізичні взаємозв'язки між фізичними та фільтраційно-ємнісними параметрами низькоомних порід-колекторів. Отримано петрофізичні взаємозв'язки, які дають змогу достовірно визначити за даними ГДС петрофізичні параметри як чистих гранулярних кварцових порід-колекторів, так і пісковиків із аномальними електричними характеристиками. Розроблено фільтраційно-ємнісну мо-дель петрофізичного зв'язку, яку можна використовувати як у ході підготовки оперативних геофізичних висновків, так і для підрахунку запасів нафти і газу.

Ключові слова: колектор, мінеральний склад, залишкова водонасиченість, структура порового простору

Рассматриваются результаты исследований структуры порового пространства сложнопостроенных пород-коллекторов; обосновывается связь структурных и литологических параметров с электропроводимостью продуктивных пород неогеновых отложений Внешней зоны Предкарпатского прогиба. По результатам экспериментальных исследований керна в приближеных к пластовым условиях, определены фильтрационно-емкостные характеристики и установлены петрофизические взаимосвязи между физическими и фильтрационно-емкостными параметрами низкоомных пород-коллекторов. Получены петрофизические взаимосвязи, позволяющие достоверно определить по данным ГИС петрофизические параметры как чистых гранулярных кварцевых пород-коллекторов, так и песчаников с аномальными электрическими характеристиками. Разработана фильтрационно-емкостная модель петрофизической связи, которую можно использовать как при подготовке оперативных геофизических заключений, так и для подсчета запасов нефти и газа.

Ключевые слова: коллектор, минеральный состав, остаточная водонасыщенность, структура порового пространства

The results of investigations of complex built reservoir rock pore space structures are considered and the relationship of structural and lithological parameters with the electrical conductivity of producing formations in neo-gene deposits of the Precarpathian Foredeep Outer Zone is grounded. According to the results of core experimental study under conditions approached to the reservoir ones, filtration-capacity characteristics were determined and petrophysical relationship between physical and filtration-capacity parameters of low-ohm reservoir rocks was defined. Obtained petrophysical relationships that allow reliably measured petrophysical parameters wich are determine with well logging data as pure granular quartz reservoir rocks and so sandstones with anomalous electrical characteristics. Filtration-capacity model of petrophysical relationship was developed and it can be applied both in preparing quick geophysical summary and for calculation of oil and gas reserves. Keywords: reservoir rock, mineral composition, residual water saturation, the structure of pore space

Актуальність. За даними геологічногеофізичних досліджень свердловин встановлюють причини та чинники, які зумовлюють неадекватну пластовим умовам електричну характеристику продуктивних порід-колекторів, здійснюють попередню оцінку їх характеру насичення та визначають положення міжфлюїдальних контактів. Однією з проблем, що обумовлює зниження видобутку вуглеводнів із нафтогазових покладів у межах Зовнішньої зони Передкарпатського прогину, є складна будова порід-колекторів, які виповнюють тонкошаруваті неогенові відклади. Наявність таких порідколекторів у геологічному розрізі свердловин значно ускладнюють як технологію, так інтерпретацію результатів геофізичних досліджень свердловин (ГДС). Для усунення похибок при виділенні складнопобудованих порід-колекторів та оцінки характеру їх насичення виникає необхідність удосконалити методику інтерпретації результатів ГДС за рахунок моделювання петрофізичних взаємозв'язків параметрів порідколекторів складної будови з даними геофізичних, петрофізичних взаємозв'язків в умовах, наближених до пластових.

Аналіз опублікованих праць. Ряд вчених – В.Н. Дахнов, Д.І. Д'яконов, М.Г. Латышова,

54

Б.Ю. Вендельштейн, В.П. Тузов та інші [1, 2, 3, 4] - займались вивченням цієї проблеми і стали основоположниками методик та способів обробки та інтерпретації даних геофізичних досліджень свердловин. В основі всіх електричних методів лежить здатність гірських порід чинити опір проходженню електричного струму, проводити електричний струм та впливати на електричні параметри природних і визваних полів. Враховуючи те, що методи електричного опору є базовими для оцінки водонасиченості, а відкоефіцієнтів нафтогазонасиченості, повідно значна кількість вчених працювала над встановленням чинників та причин змін електропровідності продуктивних порід-колекторів. Проблема побудови моделі електропровідності для конкретних геологічних розрізів є першочерговою задачею. Однак в свій час ці роботи не отримали дієвого розвитку в силу недостатнього інформативного апаратурного забезпечення свердловинних та лабораторних досліджень.

Мета даної статті – дослідити та встановити основні чинники, які впливають на електричні параметри гірських порід та покази методів електрометрії в процесі геофізичних досліджень складнопобудованих порід-колекторів неогенових відкладів Зовнішньої зони Передкарпатського прогину. Побудувати петрофізичні моделі взаємозв'язків фізичних та колекторських параметрів низькоомних порід-колекторів неогенових відкладів Зовнішньої зони Передкарпатського прогину.

Методи дослідження. Основними методами досліджень є експериментальні лабораторні вимірювання електричних петрофізичних параметрів порід-колекторів на представницьких колекціях керну, відібраного з продуктивних горизонтів неогенових відкладів Зовнішньої зони Передкарпатського прогину. Обробка отриманих результатів виконувалася методом математичної статистики.

Перед початком експериментальних досліджень зразків керну, проводились роботи зі встановлення їх структурно-текстурних, літолого-петрофізичних особливостей будови, визначення типу цементу та величини коефіцієнта пористості. За результатами таких робіт оцінювалось представництво колекції кернів та відповідність його конкретним літотипам з врахуванням інформації геофізичних свердловинних досліджень. Виходячи з того, що неогенові відклади нафтогазових родовищ Зовнішньої зони Передкарпатського прогину виповнені породами, які відрізняються між собою як структурою порового простору, так і мінералогічним складом матриці, враховуючи наявність порід-колекторів поліміктового типу, виникає необхідність для кожного окремо виділеного літолого-стратиграфічного комплексу встановити притаманні йому петрофізичні моделі та взаємозв'язки.

Екстраговані та висушені при $t = 105 \, {}^{0}\text{C}$ зразки керну, відібраного із порід-колекторів різного типу (пісковики, алевроліти), насичувалися аналогом пластової води під вакуумом

методом капілярної просякнення. Насичення контролювалось ступенем стабілізації ваги зразків гірських порід. Повне водонасичення досягалося впродовж 30 - 40 діб, що залежало від величини пористості та коефіцієнта проникності. Дослідження залишкового водонасичення у породах-колекторах складної будови нами виконувалось за два способами: центрифугуванням та методом капілярного тиску [5]. Основні результати експериментальних досліджень були отримані за допомогою методу центрифугування (табл. 1).

Суть методики дослідження зводилась до наступного: зразок керну, повністю насичений аналогом пластової води, поміщався у спеціальній циліндр центрифуги і піддавався дії відцентрових сил, в результаті чого вільна вода виштовхувалась із порового простору у мірну пастку. Процес центрифугування тривав 40 хв, за оборотів ротора 3200 об/хв, що обумовлювало внутріпустотний тиск, рівний 0,9 МПа. Значення коефіцієнта залишкового водонасичення для кожного зразка породи у пластових умовах, розраховували з врахуванням відкритої пористості за формулою:

$$K_{6.3.} = \frac{V_{6.3.}}{V_{nvcmom} - \Delta V_{nvcmom}} , \qquad (1)$$

де *К*_{в.з.} – коефіцієнт залишкового водонасичення при ефективному тиску, частки одиниць;

 $V_{e.s.}$ – об'єм води у зразках породи після центрифугування, м³;

 V_{nycmom} - об'єм відкритого порового простору зразка породи за атмосферних умов, м³;

 ΔV_{nycmom} - зміна об'єму відкритого порового простору за ефективного тиску, м³.

У процесі вимірювання параметрів, які характеризують фільтраційно-ємнісні властивості гірських порід, а саме: пористість, коефіцієнт проникності, коефіцієнт залишкового водонасичення низькоомних, а також низькопористих порід-колекторів, застосовують, в основному, типовий комплекс методів [6, 7, 8, 9].

Однак для визначення такого основного параметра, як коефіцієнт фільтрації флюїдів у породах-колекторах різної мінералогічної будови та неоднакової структури порового простору, необхідно виробити індивідуальний підхід з врахуванням тих чинників, які впливають на цей процес та видозмінюють закон Дарсі [10, 11, 12].

У згаданих роботах наведено вплив капілярних і поверхневих сил на зміну кута змочування і адсорбцію молекул газу при фільтрації останнього. Для цього випадку прийняті такі поняття, як перепад тиску прориву (ΔP_{np}) та початкового градієнту фільтрації (ПГФ), які детально описані у працях [11, 12].

З врахуванням величини тиску прориву, який створюється у процесі центрифугування, кут змочування буде залежати від структури порового простору породи і для пісковиків з гранулярним типом пористості, у яких переважають капіляри правильної, ізометричної форми, буде описуватися рівнянням Лапласа:

. <u> </u>			-				-
Номер зразка	Інтервал, м	Коефіцієнт відкритої пористості, К _{вп} %	Коефіцієнт зв'язаної води К _{зв.} %	Параметр пористості Р _п	Інтервальний час пробігу поздовжніх кол. $\Delta T_{_{MKC}/M}$	Коефіцієнт проник- ності К _{пр} 10 ⁻¹⁵ м ²	Параметр насичення при ефектив- ному тиску $P_{e\phi} = 15M\Pi a$ P_{μ}
2013	1652-1662	4,4	97	340	201	0,03	1,0
504	1190-1196	20,9	50	21	283	0,57	4,34
6387	1190-1196	20,7	29	23	299	0,51	7,5
6358	1256-1264	8,1	90	91	248	0,1	1,1
6359	1256-1264	19,5	45	24	290	0,2	3,9
510	1456-1465	15,2	94	43	274	0,073	1,0
5152	1714-1719	20,6	32	26	264	0,65	6,04
5153	1714-1719	13,9	67	81	262	0,61	2,27
6195	1264-1274	17,6	63		288	1,34	2,3
6198	1274-1284	17,8	50	26	281	4,34	3,2
6199	1338-1346	17,3	29	39	280	1,17	4,4
5451	1571-1579	12,9	58	57	263	2,45	2,1
5467	1510-1520	15,7	45	53	271	0,56	4,1
5680	1764-1770	9,5	95	79	243	0,05	1,0
5684	1879-1887	20,7	46	25	290	1,05	3,2
445	1055-1072	20,5	18	15	313	83,5	14,8
446	1055-1072	22,5	46	18	301	24,2	4,3
448	1055-1072	23,7	24	15	293	-	7,52
449	1055-1072	25,2	34	14	313	-	5,46
450	1055-1072	23,3	36	17	285	-	5,47
451	1055-1072	20,6	58	21	296	5,38	2,24
454	1055-1072	21,4	60	23	266	11,4	2,02
456	1055-1072	24,6	35	15	297	105,0	5,41
458	1055-1072	23,5	36	16	285	114,0	4,6
461	1055-1072	21,5	70	25	308	-	1,17
463	1055-1072	21,6	48	19	283	-	
468	1055-1072	24,6	32	13	286	127,0	
470	1055-1072	24.0	ΔΔ	15	279	_	

Таблиця 1 – Результати визначення фізичних параметрів зразків керна, відібраного із міоценових відкладів газових родовищ Більче-Волицької зони

$$P_{\kappa} = \frac{2\sigma\cos\theta}{r},\qquad(2)$$

де σ - поверхневий натяг на границі взаємонерозчинних флюїдів, Н/м;

 $\boldsymbol{\theta}$ - крайовий кут змочування, $^{0};$

r – радіус порового каналу, м.

Із врахуванням вище наведеного, нами визначались петрофізичні параметри міоценових відкладів газових і газокондесатних родовищ Зовнішньої зони Передкарпатського прогину, за методиками, висвітленими у роботах [13, 14, 15].

Одержані результати експериментальних досліджень зразків керну, відібраних із свердловин газових і газоконденсатних родовищ Зовнішньої зони Передкарпатського прогину, наведені у таблиці 2.

Як видно із наведених у таблиці результатів, петрофізичні параметри пісковиків мають різні значення за одинакових умов залягання пластів. Значення пористості змінюється в межах від 5,8% до 23,9% відповідно при зміні коефіцієнта об'ємної глинистості від 0,3% до 37,0%. У зв'язку з такими широкими межами зміни вище наведених петрофізичних параметрів змінюється і коефіцієнт проникнення та коефіцієнт залишкового водонасичення порід відповідно від $K_{np} \ e\phi = 0,01 \cdot 10^{-15} \text{ м}^2$ до $K_{np \ e\phi} = 396 \cdot 10^{-15} \text{ м}^2$ та вміст зв'язаної води змінюється від 6% до 63 %.

Аналіз та узагальнення результатів лабораторних петрофізичних досліджень на керновому матеріалі та даних свердловинних геофізичних досліджень Вижомлянського Летнянського та Гайського родовищ дав змогу встановити, що низькоомні породи-колектори зустрічаються в неогенових відкладах, у сарматського та гельветського ярусів. В основному це породи II класу (за класифікацією А.А. Ханіна) [16].

56

Таблиця 2 – Результати визначення петрофізичних параметрів складнопобудованих порід-колекторів неогенових відкладів газових і газоконденсатних родовищ при атмосферних умовах та ефективному тиску обжиму

Номер	Номер	Інтервал	Атмосферні умови				При ефективному тиску				
зразка	сверд-	відбору	К_	К	К	C	К	К.,		К	ΔT
породи	ловин	пороли (м)	%	%	10^{-15} m^2	%	%	%	Р	$10^{-15}, \text{ m}^2$	мкс/м
1	2	3	1	5	6	7	8	9	10	11	12
<u>1 2 3 4 3 0 7 0 7 10 11 12</u> Гайське газоре родорище											
893 7 1256-1262				94	0.01	14.3	90	70	182		225
894	7	1260-1265	17.9	79	12.4	91	16.5	44	51	1 61	254
895	7	1262-1268	20.5	55	18.7	24.8	18.7	38	49	1.01	264
8349	7	1262-1270	20.9	57	17.8	27.1	18.9	36	40	1.03	267
8351	7	1270-1273	6.5	96	0,72	81,0	5.8	100	234	< 0.001	195
8360	7	1270-1275	7.4	97	1,08	37,1	6.5	100	258	< 0.001	209
901	7	1273-1278	22.0	41	19,0	22,4	19.8	45	67	2.6	272
8474	9	1120-1126	22.4	49	13,1	19,7	20.2	42	58	1.2	276
8478	9	1122-1125	9.9	93	-	-	8.6	76	121	0.006	211
909	9	1123-1128	8.0	93	-	-	6.7	100	178	< 0.001	192
910	9	1124-1128	20.3	47	4,6	19,8	18.7	36	38	4.12	262
911	9	1126-1170	21.5	46	7,0	17,5	18.2	26	48	2.8	276
912	9	1152-1262	18.2	73	4,7	9,4	16.8	46	46	1.5	264
913	9	1262-1272	19.5	66	2,3	11,6	18.1	35	42	8.15	259
914	9	1272-1276	7.6	93	0,061	29,1	6.7	100	274	< 0.001	193
915	9	1276-1282	13.4	86	0,84	9,6	12.3	63	202	0.19	221
916	9	1282-1305	21.6	56	11,6	10,8	17.6	43	46	4.15	278
918	9	1282-1315	21.0	59	13,4	9,8	19.5	34	36	7.22	277
Вижомлянське газове родовище											
1	7	1256-1262	10.3	94	0,01	14,3	9.0	70	182		225
2	7	1260-1265	17.9	79	12,4	9,1	16.5	44	51	1.61	254
3	7	1262-1268	20.5	55	18,7	24,8	18.7	38	49	1.29	264
4	7	1262-1270	20.9	57	17,8	27,1	18.9	36	40	1.03	267
5	7	1270-1273	6.5	96	0,72	81,0	5.8	100	234	< 0.001	195
6	7	1270-1275	7.4	97	1,08	37,1	6.5	100	258	< 0.001	209
7	7	1273-1278	22.0	41	19,0	22,4	19.8	45	67	2.6	272
8	9	1120-1126	22.4	49	13,1	19,7	20.2	42	58	1.2	276
9	9	1122-1125	9.9	93	-	-	8.6	76	121	0.006	211
10	9	1123-1128	8.0	93	-	-	6.7	100	178	< 0.001	192
11	9	1124-1128	20.3	47	4,6	19,8	18.7	36	38	4.12	262
12	9	1126-1170	21.5	46	7,0	17,5	18.2	26	48	2.8	276
13	9	1152-1262	18.2	13	4,7	9,4	16.8	46	46	1.5	264
14	9	1262-1272	19.5	66	2,3	11,0	18.1	35	42	8.15	259
15	9	12/2-12/6	/.0	93	0,061	29,1	0./	100	2/4	< 0.001	193
10	9	12/6-1282	13.4	86	0,84	9,6	12.3	63	202	0.19	221
1/	9	1282-1303	21.0	50	11,0	10,8	1/.0	45	40	4.13	278
18	9	1282-1313	21.0	39	13,4	9,8	19.5	34	30	1.22	211
Летнянське газоконденсатне родовище											
4104	2	1250-1201	$\frac{23.1}{22.1}$	30	50,1	7.4 5.5	20.4	20.2	20 18	9.0	292
4255	2	1250.8-1201.5	$\frac{22.1}{20.6}$	<u></u>	51.8	9.5	18.5	46.8	27	1 75	278
4230	2	1250.8-1261.5	20.0	43	54.0	7.1	19.5	36.0	19	9.0	270
2889	2	1650 8-1660 9	44	66	0.07		17	50.0	290	7.0	186
3256	3	1240-1250	13.7	45	16.5	19	21.5	195	12	153.9	276
37	5	1246-1262	16.7	50	11,2		15.2	48	47	1.3	263

1	2	3	4	5	6	7	8	9	10	11	12
4951	5	1316-1332	23.0	38	64,1	9.2	20.7	31.8	21	7.3	283
5009	5	1430-1446	17.7	47	10,7	10.9	14.9	48.5	41		267
	5	1431-1447	20.9	49	49,6	0.3	19.8	15.0	18	396	251
5055	7	1470-1475.0	20.7	48	50,2	6.8	20	33	21	7.0	271
5061	7	1473-1476.0	17.9	41	12,6	15.8	13.6	46.2	44	1.75	251
5064	7	1567.1-1568.2	10.9	34	9,8	13.4	9.5	70	83		241
4397	9	1162-1168	25.1	17	14,5	6.9	24	15.2	14		283
53	9	1168-1178	26.0	-	-	7.9	24.6	21.0	13		308
4376	9	1252-1256	10.3	29	0,12	10.3	9.2	67.1	101	2.7	231
58	9	1256-1260	23.9	41	56,4	4.2	22.8	31.0	14	159.3	292
4391	9	1260-1262	23.6	38	47,9	9.3	21.7	33.0	21	13.8	289
69	9	1305-1310	18.4	43,5	41,4	3.0	17.3	22.0	25	159.7	255
4184	2	1250-1261	23.1	36	56,1	7.4	20.4	26.2	20	9.0	292
4255	2	1250.8-1261.5	22.1	38	50,7	5.5	20.6	38.7	18		303
4258	2	1250.8-1261.5	20.6	41	51,8	9.1	18.5	46.8	27	1.75	278
4234	2	1250.8-1261.5	21.9	43	54,0		19.8	36.0	19	9.0	272
2889	2	1650.8-1660.9	4.4	66	0,07		1.7		290		186
3256	3	1240-1250	13.7	45	16,5	1.9	21.5	19.5	12	153.9	276
37	5	1246-1262	16.7	50	11,2		15.2	48	47	1.3	263
4951	5	1316-1332	23.0	38	64,1	9.2	20.7	31.8	21	7.3	283
5009	5	1430-1446	17.7	47	10,7	10.9	14.9	48.5	41		267
	5	1431-1447	20.9	49	49,6	0.3	19.8	15.0	18	396	251
5055	7	1470-1475.0	20.7	48	50,2	6.8	20	33	21	7.0	271
5061	7	1473-1476.0	17.9	41	12,6	15.8	13.6	46.2	44	1.75	251

Продовження таблиці 2

Діапазон зміни коефіцієнта пористості досить широкий і коливається у межах 9 - 35. З врахуванням вищевказаного нами здійснено градацію порід колекторів неогенових відкладів, в основу якої лягли петрофізичні та електричні параметри:

– пісковики слабкозцементовані: коефіцієнти пористості змінюються від 0,22 до 0,36, коефіцієнт проникнення - від $122 \cdot 10^{-15}$ м² до $400 \cdot 10^{-15}$ м², діапазон зміни питомого електричного опору ρ_n - від 3,8 Омм до 8,7 Омм;

– пісковики високопористі: коефіцієнт пористості змінюється від 0,20 до 0,30, коефіцієнт проникнення - від $10 \cdot 10^{-15}$ м² до $166 \cdot 10^{-15}$ м², питомий електричний опір - від 8,7 Омм до 19,5 Омм;

– пісковики середньої пористості: коефіцієнт пористості змінюється у межах від 0,10 до 0,20, коефіцієнт проникності - від (0,2-0,6)·10⁻¹⁵ м² до 10·10⁻¹⁵ м². Питомий електричний опір ρ_n змінюється від 12,1 Омм до 31,5 Омм;

– пісковики низькопористі: коефіцієнт пористості змінюється від 0,045 до 0,083, коефіціент проникності змінюється від 0,01·10⁻¹⁵ м² до 5·10⁻¹⁵ м², питомий електричний опір змінюється у межах від ρ_n =20,5 Омм до 44,7 Омм.

Останній тип пісковиків тільки в окремих випадках може бути колектором [17].

Статистичне опрацювання експериментальних даних, отриманих у ході лабораторних досліджень зразків керну, відібраних із неогенових відкладів, які представлені тонкопрошарковою будовою, дозволило побудувати гістограми розподілу пустот різного радіуса для порід-колекторів неогенових відкладів (рис. 1).

Отримані петрофізичні взаємозв'язки (рис. 2) дозволяють достовірно визначити за даними ГДС петрофізичні параметри як чистих гранулярних кварцових порід-колекторів, так і пісковиків із аномальними електричними характеристиками.

а) розподіл радіусів пор (R_{пор}) порідколекторів;

б) залежність подвійного різницевого параметру гамма-каротажу від коефіцієнта глинистості;

 в) залежність інтервального часу від коефіцієнта пористості;

г) залежність параметра насичення від коефіцієнта водонасичення.

Висновки та завдання подальших досліджень. За результатами експериментальних лабораторних досліджень на зразках керну встановлено особливості будови складнопобудованих колекторів, які насичені вуглеводнями але відображаються на зареєстрованих кривих свердловинних геофізичних досліджень неадекватним пластовим умовам характеристиками. Нами встановлено, що характеристика електричної моделі мономінеральних пісковиків обумовлена, в основному, структурою порового простору, (співвідношенням радіусів пор великих і малих розмірів), характером насичуючого флюїду, величиною залишкового водонасичення та об'ємної глинистості. Для такого типу порід-колекторів розроблено зведену петрофі-

Рисунок 1 – Розподіл радіусів пор порід-колекторів неогенових відкладів у Зовнішній зоні Передкарпатського прогину

зичну модель (рис. 2), яку можна використовувати як в процесі поточної та оперативної інтерпретації, так і при визначенні підрахункових параметрів для порід-колекторів складної будови.

Завданням подальших досліджень є встановлення характеристик електричної моделі полімінеральних пісковиків та розробка зведених петрофізичних моделей для такого типу порід-колекторів. Впровадження запропонованих петрофізичних моделей для оцінки підрахункових параметрів порід-колекторів складної будови та їх удосконалення.

Література

1 Дахнов В.Н. Геофизические методы определения коллекторских свойств и нефтенасыщенности пород / В.Н. Дахнов. – М.: Недра, 1985. – 310 с.

2 Дахнов В.Н. Интерпретация результатов геофизических исследований разрезов скважин / В.Н. Дахнов. – М.: Недра, 1972. – 365 с.

3 Дьяконов Д.И. Общий курс геофизических исследований скважин: учебник для вузов; изд. 2-е перероб. / Д.И. Дьяконов, Е.И.Леонтьев, Г.С.Кузнецов. – М.: Недра, 1984. – 432 с.

ISSN 1993—9965. Науковий вісник ІФНТУНГ. 2013. № 1(34) •

4 Латышова М.Г. Обработка и интерпретация материалов геофизических исследований скважин / М.Г.Латышова, Б.Ю.Вендельштейн, В.П.Тузов. – М.: Недра, 1990. – 312 с.

5 Дортман Н.Б. Горные породы и полезные ископаемые, справочник / Н.Б. Дортман. – М.: Недра, 1984. – 455 с.

6 ГОСТ 26450.0-85. Породы горные. Методы определения коллекторских свойств. – М.: Госкомстандарт СССР, 1985.

7 Нестеренко Н.Ю. Обоснование граничных и кондиционных значений параметров пород-коллекторов / Н.Ю. Нестеренко // Геология нефти и газа. – 1996. – №3. – С.40-41.

8 Орлов Л.И. Петрофизические исследования коллекторов нефти и газа / Л.И. Орлов, Е.Н. Карпов, В.Г. Тапорков. – М.: Недра, 1987. – 216 с.

9 Тульбович Б.И. Методы изучения породколлекторов нефти и газа / Б.И. Тульбович. – М.: Недра, 1979. – 199 с.

10 Аметов И.М. Нелинейные эффекты при фильтрации газа / И.М. Аметов // Нефтяное хозяйство. – 1992. – №7. – С.30-31.

11 Мирзаджанзаде А.Х. О законе фильтрации газа в пористой среде / [А.Х. Мирзаджанзаде, А.И. Гриценко, И.М. Аметов, О.И. Ата-

Рисунок 2 – Петрофізична характеристика порід-колекторів міоценових відкладів газових родовищ Більче-Волицької зони

баев] // Докл. АН СССР – 1969, Т.184, вып.4. – С. 794-795.

12 Федишин В.О. Дослідження водопроникності низькопористих порід / В.О. Федишин // Геологія і геохімія. – 1999. – №4. – С.111-116.

13 Бортницкая В.М. Обоснование кондиционных параметров коллекторов нижнего сармата Предкарпатского прогиба по керну / [В.М. Бортницкая, Н.Н. Оршинская, Б.П. Пилипчик и др.] // Геология нефти и газа. – 1982. – №11. – С.34-40.

14 ГСТУ 41-00032626-00-025-2000 Коефіцієнт водонасичення гірських порід. Методика виконання вимірювання методом центрифугування зразків. – К.: Мінекоресурсів України, 2001. – 19 с.

15 Нефедова Л.И. Определение нефтегазонасыщенных терригенных коллекторов / Л.И. Нефедова, Н.А. Пих. – М.: Недра, 1989. – 161 с. 16 Ханин А.А. Породы-коллекторы нефти и их изучение / А.А. Ханин. – М.: Недра, 1976. – 363 с.

17 Федишин В.О. Особливості фільтрації газу в низькопористих колекторах / В.О. Федишин // Вісник Львівського університету. Серія геологічна: – 2001. – Вип. 15. – С. 41–48.

Стаття надійшла до редакційної колегії 16.01.13 Рекомендована до друку професором **Федоришиним Д.Д.** (ІФНТУНГ, м. Івано-Франківськ) канд. геол.-мінерал. наук **Штурмаком І.Т.** (НДПІ ПАТ «Укрнафта», м. Івано-Франківськ)