[14] N. Hindman, D. Strauss, Algebra in the Stone-Čech compactification, de Gruyter, Berlin, New York, 1998.

ON SUFFICIENT CONDITIONS FOR A POLYNOMIAL TO BE SIGN-INDEPENDENTLY HYPERBOLIC OR TO HAVE REAL SEPARATED ZEROS

IRYNA KARPENKO

V. N. Karazin Kharkiv National University XA08942099@student.karazin.ua

The well-known Hutchinson's theorem states that if P be a polynomial with positive coefficients, $P(x) = \sum_{k=0}^{n} a_k x^k$, and $\frac{a_{k-1}^2}{a_{k-2}a_k} \ge 4$ for $k=2,3,\ldots,n$, then all the zeros of P are real. We obtain sufficient conditions for a real polynomial to be a sign-independently hyperbolic polynomial or to have real separated roots in the style of Hutchinson's theorem.

Joint work with Anna Vishnyakova.

References

- [1] J. I. Hutchinson, On a remarkable class of entire functions, // textslTrans. Amer. Math. Soc. 25 (1923), 325-332.
- O.M.Katkova, B.Shapiro and A.Vishnyakova, Multiplier sequences and logarithmic mesh, // Comptes rendus - Mathematique, 349 (2011), pp. 35-38, DOI information: 10.1016/j.crma.2010.11.031
- [3] B. Ja. Levin, Distribution of Zeros of Entire Functions // Transl. Math. Mono., 5, Amer. Math. Soc., Providence, RI, 1964; revised ed. 1980.

WIMAN'S INEQUALITY FOR ANALYTIC FUNCTIONS IN $\mathbb{D} \times \mathbb{C}$ WITH RAPIDLY OSCILLATING COEFFICIENTS

¹Kuryliak Andriy, ²Skaskiv Oleh, ³Tsvigun Volodymyr Ivan Franko National Universiy of L'viv, Lviv, Ukraine ¹kurylyak88gmail.com, ²olskaskgmail.com, ³12lvan.nukr.net

By \mathcal{A}^2 we denote the class of analytic functions $f\colon \mathbb{D}\times\mathbb{C}\to\mathbb{C},\ \mathbb{D}=\{\tau\in\mathbb{C}\colon |\tau|<1\}$ of the form $f(z)=f(z_1,z_2)=\sum_{n+m=0}^{+\infty}a_{nm}z_1^nz_2^m,\ z=(z_1,z_2).$ For $r=(r_1,r_2)\in T:=[0,1)\times(0,+\infty)$ and $f\in\mathcal{A}^2$ denote

$$\Delta_r = \{t = (t_1, t_2) \in T : t_1 \geqslant r_1, t_2 \geqslant r_2\},\$$

$$\mu_f(r) = \max\{|a_{nm}|r_1^nr_2^m\colon n, m\geqslant 0\}, M_f(r) = \max\{|f(z)|\colon |z_1|=r_1, |z_2|=r_2\}.$$

Let $\mathcal{K}(f,\theta) = \{f(z,t) = \sum_{n+m=0}^{+\infty} a_{nm} \exp\{2\pi i \theta_{nm} t\} r_1^n r_2^m : t \in \mathbb{R}\}$, where $\{\theta_{nm}\}$ is a sequence of positive integers such that its arrangement $\{\theta_k^*\}$ by increasing, i.e. $\{\theta_{nm} : (n,m) \in \mathbb{Z}_+^2\} = \{\theta_k^* : k \geq 0\}$, $\theta_{k+1}^* > \theta_k^*$, satisfies the condition $\theta_{k+1}^*/\theta_k^* \geq q > 1$ $(k \geq 0)$.

Let \mathcal{A}_0^2 be the class of analytic functions $f \in \mathcal{A}^2$ such that $\frac{\partial}{\partial z_2} f(z_1, z_2) \not\equiv 0$ in T. We say that a subset E of \mathbb{R}^2 is a asymptotically finite logarithmic measure $E \in \mathcal{E}$ if E is the Lebesque measurable in \mathbb{R}_+^2 and there exists an $r_0 \in \mathbb{R}_+^2$ such that $E \cap \Delta_{r_0}$ is a set of finite logarithmic measure, i.e.

$$\ln_2 - \operatorname{meas}(E \cap \Delta_{r_0}) := \iint_{E \cap \Delta_{r_0}} \frac{dr_1 dr_2}{(1-r_1)r_2} < +\infty, \ (E \in \mathcal{E}).$$

Theorem 1 ([1]). Let $f \in \mathcal{A}_0^2$. For every $\delta > 0$ there exists a set $E = E(\delta, f) \subset T$, $E \in \mathcal{E}$ such that for all $r \in T \setminus E$ we obtain

$$M_f(r) \leqslant \frac{\mu_f(r)}{(1-r_1)^{1+\delta}} \ln^{1+\delta} \frac{\mu_f(r)}{1-r_1} \cdot \ln^{1/2+\delta} r_2.$$

Theorem 2. Let $f \in \mathcal{A}_0^2$, $f(z,t) \in \mathcal{K}(f,\theta)$. Then almost surely for $t \in \mathbb{R}$ there exist $r_0 \in \mathbb{R}_+^2$ and a set $E \in \mathcal{E}$ such that for all $r \in \Pi(R) \setminus E$ we have

$$M_f(r,\omega) = \max\{f(z,\omega)\colon |z| = r\} \leqslant \frac{\mu_f(r)}{(1-r_1)^{1/2+\delta}} \ln^{1/2+\delta} \frac{\mu_f(r)}{1-r_1} \cdot \ln^{1/4+\delta} r_2.$$

References

 A.O. Kuryliak, L.O. Shapovalovska, O.B. Skaskiv, Wiman's type inequality for some double power series // Mat. Stud., 39 (2013), no. 2, 134-141.

QUASI-ELLIPTIC FUNCTIONS

KHRYSTIYANYN ANDRIY LUKIVSKA DZVENYSLAVA

Ivan Franko National University of Lviv, Ukraine khrystiyanyn@ukr.net, d.lukivska@gmail.com

Denote $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

Definition. A meromorphic in \mathbb{C} function g is called quasi-elliptic, if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$, $Im_{\omega_1}^{\omega_2} > 0$, and $p \in \mathbb{C}^*$, $q \in \mathbb{C}^*$, such that for every $u \in \mathbb{C}$

$$g(u+\omega_1)=pg(u), \ g(u+\omega_2)=qg(u).$$

For this class of functions we construct analogues of classic \wp , ζ and σ Weierstrass functions. Also a connection between quasi-elliptic and p-loxodromic [1] functions is obtained.