$$\mu_f(r) = \max\{|a_{nm}|r_1^nr_2^m\colon n, m\geqslant 0\}, M_f(r) = \max\{|f(z)|\colon |z_1|=r_1, |z_2|=r_2\}.$$

Let $\mathcal{K}(f,\theta) = \{f(z,t) = \sum_{n+m=0}^{+\infty} a_{nm} \exp\{2\pi i \theta_{nm} t\} r_1^n r_2^m : t \in \mathbb{R}\}$, where $\{\theta_{nm}\}$ is a sequence of positive integers such that its arrangement $\{\theta_k^*\}$ by increasing, i.e. $\{\theta_{nm} : (n,m) \in \mathbb{Z}_+^2\} = \{\theta_k^* : k \geq 0\}$, $\theta_{k+1}^* > \theta_k^*$, satisfies the condition $\theta_{k+1}^*/\theta_k^* \geq q > 1$ $(k \geq 0)$.

Let \mathcal{A}_0^2 be the class of analytic functions $f \in \mathcal{A}^2$ such that $\frac{\partial}{\partial z_2} f(z_1, z_2) \not\equiv 0$ in T. We say that a subset E of \mathbb{R}^2 is a asymptotically finite logarithmic measure $E \in \mathcal{E}$ if E is the Lebesque measurable in \mathbb{R}_+^2 and there exists an $r_0 \in \mathbb{R}_+^2$ such that $E \cap \Delta_{r_0}$ is a set of finite logarithmic measure, i.e.

$$\ln_2 - \operatorname{meas}(E \cap \Delta_{r_0}) := \iint_{E \cap \Delta_{r_0}} \frac{dr_1 dr_2}{(1-r_1)r_2} < +\infty, \ (E \in \mathcal{E}).$$

Theorem 1 ([1]). Let $f \in \mathcal{A}_0^2$. For every $\delta > 0$ there exists a set $E = E(\delta, f) \subset T$, $E \in \mathcal{E}$ such that for all $r \in T \setminus E$ we obtain

$$M_f(r) \leqslant \frac{\mu_f(r)}{(1-r_1)^{1+\delta}} \ln^{1+\delta} \frac{\mu_f(r)}{1-r_1} \cdot \ln^{1/2+\delta} r_2.$$

Theorem 2. Let $f \in \mathcal{A}_0^2$, $f(z,t) \in \mathcal{K}(f,\theta)$. Then almost surely for $t \in \mathbb{R}$ there exist $r_0 \in \mathbb{R}_+^2$ and a set $E \in \mathcal{E}$ such that for all $r \in \Pi(R) \setminus E$ we have

$$M_f(r,\omega) = \max\{f(z,\omega)\colon |z| = r\} \leqslant \frac{\mu_f(r)}{(1-r_1)^{1/2+\delta}} \ln^{1/2+\delta} \frac{\mu_f(r)}{1-r_1} \cdot \ln^{1/4+\delta} r_2.$$

References

 A.O. Kuryliak, L.O. Shapovalovska, O.B. Skaskiv, Wiman's type inequality for some double power series // Mat. Stud., 39 (2013), no. 2, 134-141.

QUASI-ELLIPTIC FUNCTIONS

KHRYSTIYANYN ANDRIY LUKIVSKA DZVENYSLAVA

Ivan Franko National University of Lviv, Ukraine khrystiyanyn@ukr.net, d.lukivska@gmail.com

Denote $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$.

Definition. A meromorphic in \mathbb{C} function g is called quasi-elliptic, if there exist $\omega_1, \omega_2 \in \mathbb{C}^*$, $Im_{\omega_1}^{\omega_2} > 0$, and $p \in \mathbb{C}^*$, $q \in \mathbb{C}^*$, such that for every $u \in \mathbb{C}$

$$g(u+\omega_1)=pg(u), \ g(u+\omega_2)=qg(u).$$

For this class of functions we construct analogues of classic \wp , ζ and σ Weierstrass functions. Also a connection between quasi-elliptic and p-loxodromic [1] functions is obtained.

References

 Khoroshchak V.S., Khrystiyanyn A.Ya., Lukivska D.V. A class of Julia exceptional functions // Carpathian Math. Publ. 2016, 8 (1). 172-180. doi:10.15330/cmp.8.1.172-180.

SOME GENERALIZATIONS OF p-LOXODROMIC FUNCTIONS

LUKIVSKA DZVENYSLAVA

Ivan Franko National University of L'viv, Ukraine d.lukivska@gmail.com

Denote $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$ and let $q, p \in \mathbb{C}^*$, |q| < 1.

Definition. [1] A meromorphic in \mathbb{C}^* function f is said to be p-loxodromic of multiplicator q if for every $z \in \mathbb{C}^*$

$$f(qz)=pf(z).$$

For $z \in \mathbb{C}^*$ consider the equation of the form

$$f(qz) = p(z)f(z), (1)$$

where p(z) is some function. If $p(z) \equiv const$, then meromorphic solution of this equation is p-loxodromic function. In particular, if $p(z) \equiv 1$, we have classic loxodromic function. It was studied in the works of O. Rausenberger [2], G. Valiron [3] and Y. Hellegouarch [4]. The class of loxodromic functions is denoted by \mathcal{L}_q .

For certain functions p(z) holomorphic solutions of equation (1) are found. These solutions will be some generalizations of p-loxodromic functions.

First, consider the functional equation of the form

$$f(qz) = \frac{1}{1-z}f(z), z \in \mathbb{C}^*.$$
 (2)

Define the entire function with the zero sequence $\{q^{-n}\}$, where $n \in \mathbb{N} \cup \{0\}$, 0 < |q| < 1,

$$H(z) = \prod_{n=0}^{\infty} (1 - q^n z).$$

Theorem 1. Every holomorphic in \mathbb{C}^* solution of (2) has the form f(z) = CH(z), where C is a constant.