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Denote C* = C\{0} and let q,p e C*, |g| < 1.

Definition. [1] A meromorphic in C* function f is.said to be p-loxodromic
of multiplicator q if for every z € C*

flgz) = pf(2).
For z € C* consider the equation of the form

f(gz) = p(2)f(2), (1)

where p(z) is some function. If p(z) = const, then meromorphic solution of
this equation is p-loxodromic function. In particular, if p(z) = 1, we have
classic loxodromic function. It was studied in the works of O. Rausenberger
[2], G. Valiron [3] and Y. Hellegouarch [4]. The class of loxodromic functions
is denoted by L.

For certain functions p(z) holomorphic solutions of equation (1) are found.
These solutions will be some generalizations of p-loxodromic functions.

First, consider the functional equation of the form

1

flgz) = 7—

f(2), z e C*. (2)

Define the entire function with the zero sequence {¢~"}, where n € N u {0},
0<lq <1,

O

H(z) = [J(1-q2).

n=0

Theorem 1. Every holomorphic in C* solution of (2) has the form f(z) =
CH(z), where C is a constant.
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Also, we consider the functional equation of the form

7g9) = 2f(2), z€ C*. 3)

Definition. /1] The function

a0 qn
P(z)=(1-2) H(] ~q"2) (1 — ?)
n=1}
is called the Schottky-Klein prime function.

Theorem 2. Every holomorphic in C* solution of (3) has the form f(z) =
CP(—z), where C is a constant.
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It is well known since the pioneering work {1] that a computer programn
is described by the corresponding predicate transformer, i.e. the mapping that
transforms a valid knowledge about program input into a valid knowledge about
the output. It is also commonly agreed [3] that the proper domains contain-
ing such predicates are directed complete continuous posets, and the predicate
transformers are Scott continuous. Henee a viable choice for description of de-
terministic programs is the category Semg of all continuous semigroups [2] with
bottom elements and their Scott continuous bottom-preserving (not necessarily
meet-preserving) mappings.

Unfortunately this category is inappropriate for nondeterministic programs,
or, equivalently, for game situations, where a player can play different moves
in the same position. We propose to use a relation (= a multivalued mapping)
here:

14



