- 2. Frey, C. B., & Osborne, M. A. (2017). The future of employment: How susceptible are jobs to computerisation? *Technological Forecasting and Social Change*, 114, 254-280. https://doi.org/10.1016/j.techfore.2016.08.019
- 3. Matúšová, S., & Tamášová, V. (2021). Digital competences: Empowerment of education at universities. Y 7th international scientific-business conference LIMEN 2021 leadership, innovation, management and economics: Integrated politics of research CONFERENCE PROCEEDINGS.
- 4. Kedia, B. L., & Englis, P. D. (2011). Internationalizing Business Education for Globally Competent Managers. *Journal of Teaching in International Business*, 22(1), 13–28. https://doi.org/10.1080/08975930.2011.585903
- 5. Honcharov, Y. V., Dykha, M. V., Voronina, V., Milka, A., & Klymenchukova, N. (2023). Forecasting the innovation of Ukraine's economic development in a global dimension. *Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu*, (1), 174–181. https://doi.org/10.33271/nvngu/2023-1/174
- 16. Manan, N. A. (2021). Developing management and leadership training innovation program for higher education at Muhammadiyah universities. *Indonesian Journal on Learning and Advanced Education*, 57–60.

UDC 658.5:656.1

Leniv A., 4th-year student, Educational Program "Management"
Ivano-Frankivsk National Technical University of Oil and Gas
Ovetska O., PhD in Economics, Associate Professor of the Department,
Management and Administration
Ivano-Frankivsk National Technical University of Oil and Gas

OPERATIONAL MANAGEMENT AS THE FOUNDATION FOR THE FUNCTIONING OF LOGISTICS ENTERPRISES

In the face of global disruptions and increasing complexity, operational management has become pivotal for logistics enterprises aiming to maintain resilience and efficiency. The integration of advanced planning and optimization techniques enables organizations to adapt swiftly to changing conditions, ensuring continuity in supply chain operations [1, p. 2]. Recent studies emphasize the necessity of flexible planning and scheduling procedures that can respond effectively to unforeseen challenges, highlighting the critical role of operational management in sustaining competitive advantage.

By employing quantitative models, logistics companies can optimize resource allocation, streamline operations, and enhance overall performance. These approaches have proven essential in navigating the complexities of modern supply chains, particularly in the context of project planning and scheduling [2, p. 193].

Let us consider in more detail the interconnection between operational management and logistics at logistics enterprises using the following table 1.

The analysis of the interconnection between operational management and logistics at logistics enterprises demonstrates their integrated nature, where key business processes function as a single system. Synergy between these areas ensures the achievement of common goals: continuity and coherence of supply and production, maximum efficiency in resource utilization, timely and quality order fulfilment, high customer satisfaction, cost optimization, and increased overall enterprise productivity.

Table 1 – Interconnection of operational management at logistics enterprises

Table 1 – Interconnection of operational management at logistics enterprises			
Key	Logistics Components	Operational Management	Common Goal
Processes		Components	
Planning	Development of supply	Strategic and operational	Ensuring continuity
	plans, management of	planning of production	and coherence of
	warehouse and	processes and service	supply and production
	transport infrastructure	delivery volumes	processes
Resource	Organization of	Management of labor,	Maximizing the
Management	procurement processes	technical, and energy	efficiency of resource
	for material and	resources of production	utilization
	technical resources,		
	inventory control		
Operations	Operational	Execution of production	Timely and high-
Execution	management of freight	tasks, implementation of	quality order
	transportation,	service delivery processes	fulfilment
	warehouse operations		
Quality	Monitoring the	Ensuring quality control at	Achieving a high level
Control	compliance of goods	all stages of the production	of customer
	and logistics services	process	satisfaction
	with established		
	standards		
Innovation	Integration of digital	Use of production	Business process
	technologies for supply	automation tools, digital	optimization,
	chain management	twins, and the Smart	increased productivity,
	(TMS, WMS)	Factory concept	and reduced
			operational costs
Financing	Cost management of	Investment in production	Cost rationalization at
	logistics processes,	capacities, modernization,	all stages of the
	warehouses, and	and expansion of	product life cycle:
	transport operations	production	supply – production –
			delivery

Source: compiled by the author

The integration of digital technologies in both areas further strengthens their interaction, promoting flexibility, innovation, and sustainable development of logistics companies in a dynamic market environment.

Thus, operational management acts as the foundation of effective functioning for logistics enterprises, providing strategic direction and coordination across all stages of the value creation chain.

LLC "Oil-Trans" is a vivid example of how operational management ensures efficiency and competitiveness in the logistics business. Founded in 2016, the company specializes in the transportation of hazardous goods using its own fuel trucks within Ukraine and beyond—specifically to Poland, Slovakia, and the Czech Republic. Additionally, the company provides equipment for unloading crushed stone, which expands its logistics capabilities.

A key element of operational management at the company is transportation planning: routes are optimized not only by distance but also according to safety criteria, which is of particular importance in the transport of hazardous substances. The integration of digital technologies, such as transport monitoring systems and document automation, aligns with the Smart Logistics concept and contributes to increased operational productivity and reduced transaction costs.

Thus, the activities of LLC "Oil-Trans" serve as an example of the practical application of interrelated principles of operational management and logistics to ensure sustainable competitiveness in the transport services market.

References

- 1. Kosztyán, Z.T. & Kovács, Z. (2023). Mathematical Methods and Operation Research in Logistics, Project Planning, and Scheduling. MDPI. 290. https://doi.org/10.3390/books978-3-0365-6373-2
- 2. Álvarez-Miranda, E., & Pereira, J. (2022). A Districting Application with a Quality of Service Objective. *Mathematics*, 10(1), 13. https://doi.org/10.3390/math10010013

UDC 005.32

Mykhailetskyi D. P., Student

Kinash I. P., Doctor of Economic Sciences, Professor, Head of the Department of Management and Administration Ivano-Frankivsk National Technical University of Oil and Gas

MOTIVATION OF GENERATION Z

The modern world is shaped by rapid technological growth, social media, and artificial intelligence. These factors strongly affect people's behavior, mindset, and thinking skills. A huge flow of information, unlike anything before in human history, is changing how we see reality [1]. Generation Z (roughly mid-1990s to early 2010s) is the first generation born in the digital age and deeply influenced by technology. Understanding their behavior is key for successful business management. Every year, more Gen Z individuals enter the workforce. It's expected that soon they will become the majority [2].

In 2019, Gen Z made up 1.089 million workers in Ukraine, and by 2021 this number grew to 1.128 million [3]. This shows a steady rise in their economic role. This generation already sets trends, drives innovation, and shapes cultural norms.