- 2. United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR). (2020). *Sources, Effects and Risks of Ionizing Radiation: UNSCEAR* 2019 Report. United Nations.
- 3. World Health Organization (WHO). (2016). *Radiation: Effects and Risks*. WHO Fact Sheets. Retrieved from https://www.who.int
 - 4. Slovic, P. (2000). *The Perception of Risk*. Earthscan Publications.
- 5. NRC (National Research Council). (2006). *Health Risks from Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase* 2. The National Academies Press.
- 6. Mettler, F. A., & Upton, A. C. (2008). *Medical Effects of Ionizing Radiation* (3rd ed.). Saunders.
- 7. Covello, V. T., & Merkhofer, M. W. (1993). Risk Assessment Methods: Approaches for Assessing Health and Environmental Risks. Springer.
- 8. ISO 31000. (2018). *Risk management Guidelines*. International Organization for Standardization.
- 9. European Commission. (2013). Guidelines for Risk Assessment and Management of Radiation Emergencies. EURATOM.
- 10. Nussbaum, R. H., & Kohnlein, W. (1994). Inconsistencies and open questions regarding low-dose health effects of ionizing radiation. *Environmental Health Perspectives*, 102(8), 656–667.

UDC 621.3

Diviziniuk M.M.

Dr. Phys.-Math. Sci., Professor, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

Farrakhov O.V.

Cand. Sc. (Tech.), Senior Research Fellow, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

Kovach V.O.

D.Sc. in Public Administration, Professor, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

Zaitsev Ie.O.

D.Sc. (Tech.), Senior Research Fellow, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

REGULARITIES OF THE PROCESS OF TARGET DETECTION BY PULSE RADAR STATIONS

The protection and defence of the state's critical infrastructure against various types of terrorist threats is an integral part of Ukraine's national security. These facilities include nuclear, thermal and hydroelectric power plants, mining

and processing plants, petrochemical plants, metallurgical plants and other enterprises that are strategic assets. Today, one of the key tasks of ensuring security is to counteract unmanned aerial vehicles that cause terrorist attacks on strategic facilities and critical infrastructure [1]. It is known that today, the main means for detecting air targets are pulse radar stations, the use of which must be optimised depending on specific factors that ensure the solution of critical infrastructure security tasks [2].

Optimal detection of electromagnetic signals is based on the excess of the level (magnitude or intensity) of the received useful signal $I_{(sig)}$ over the level of interference $I_{(obs)}$ interacting on the input of the receiving device, i.e. the condition must be met:

$$I_{sig} \ge \delta \cdot I_{obs},$$
 (1)

where δ is the recognition coefficient, a dimensionless value determined as a result of signal processing in the radar receiver.

Propagating in space, the intensity of an electromagnetic wave decreases not only due to the expansion of the wave front, but also due to volume attenuation. Its value is determined by the volume attenuation coefficient β . This value depends on the frequency of electromagnetic oscillations propagating in space and is determined empirically [3,4]. Thus, the current value of the electromagnetic wave intensity will be as follows:

$$\frac{P_i \cdot K_{amp}}{(4\pi \mathcal{I})^2} \cdot 10^{-0,1} \cdot \beta \cdot \mathcal{I}_{\kappa m}. \tag{2}$$

The reflected electromagnetic wave propagating in the opposite direction will be attenuated due to wave front expansion and volume attenuation. Its intensity will decrease in proportion to the square of the current distance, expressed in metres $(4\pi D)^{(2)}$ and in kilometres $10^{-0.1-\beta-(D)(km)}$.

$$20 \cdot \lg \mathcal{J} + \beta \mathcal{J}_{KM} + K \leq$$

$$\leq \frac{1}{2} \left(10 \cdot \lg \delta + 10 \cdot \lg P - 20 \cdot \lg K_{amp} - 10 \cdot \lg P - 20 \cdot \lg R_e \right),$$

$$obs \qquad i$$

$$(3)$$

where $K \sim 10.98$ is dB

Expression (3) is commonly referred to as a non-strict radar range inequality. The right-hand side of the expression has six terms that express in decibel form the values of the main technical characteristics of the radar, namely: the recognition coefficient δ , the sensitivity of the receiving device $P_{(r)}$, the gain of the radar antenna $K_{(p)}$, the radiation power $P_{(i)}$ and the main parameter of the irradiated radar target - the radius of the equivalent reflecting surface $R_{(e)}$.

List of refences

1. Divizinyuk, M.M., Azarenko, E.V., Goncharenko, Yu.Yu., Lazarenko, S.V., Ozhiganova, M.I. (2019). Information and technical methods for preventing emergency situations of a terrorist nature at critical infrastructure facilities. Part 1. Using active pulse radar means. Monograph. Kyiv. State Institution «IGNS NAS of Ukraine».

- 2. Azarenko O.V., Goncharenko Yu.Yu., Divizinyuk M.M., Zemlyansky O.M., Farrakhov O.V. (2024). The main principles of the target detection process by pulsed radar stations when ensuring the security of critical infrastructure facilities. Scientific Collection «InterConf+», (45(201)), P.650–660. https://doi.org/10.51582/interconf.19-20.05.2024.067
- 3. Azarenko O.V., Goncharenko Y.Yu., Divizinyuk M.M., Zemlyanskyy O.M., Farrakhov O.V. (2024). Regularities of propagation, attenuation and decrease in intensity of electromagnetic waves in the atmosphere, affecting the operation of radar stations that ensure the safety of critical infrastructure facilities. Grail of Science, (40). P.235–248. https://doi.org/10.36074/grail-of-science.07.06.2024.036
- 4. Azarenko O.V., Goncharenko Y.Yu., Divizinyuk M.M., Zemlyanskyy O.M., Farrakhov O.V. (2024). Characteristics of the energy potential of radar stations that ensure the safety of critical infrastructure facilities and the properties of reflecting small air targets depending on various factors. Scientific Collection «InterConf+», (46(205)), P.549–561. https://doi.org/10.51582/interconf.19-20.06.2024.052

UDC 621.3

Diviziniuk M.M.

Dr. Phys.-Math. Sci., Professor, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

Farrakhov O.V.

Cand. Sc. (Tech.), Senior Research Fellow, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

Zaporozhets A.O.

D.Sc. (Tech.), Senior Research Fellow, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

Khapko Yu.B.

Cand. Sc. (Law), Senior Research Fellow, Center for Information-analytical and Technical Support of Nuclear Power Facilities Monitoring of the NAS of Ukraine

CLASSIFICATION OF RADAR EQUIPMENT FOR UNMANNED AERIAL VEHICLES DETECTION

A radar is a system for detecting air, sea and land objects, as well as for determining their range, speed and geometric parameters. The specifics of solving individual tasks and their wide range led to a wide variety of different types of radars:

- by the scope of use: military and civilian;